The induction of tolerance is a major goal of immunotherapy. Investigations over the last 20 years have shown that anti-CD3 monoclonal antibodies (mAbs) effectively treat autoimmune disease in animal models and have also shown promise in clinical trials. Tolerance induction by anti-CD3 mAbs is related to the induction of Tregs that control pathogenic autoimmune responses. Here, we review preclinical and clinical studies in which intravenous or mucosal administration of anti-CD3 mAbs has been employed and provide an outlook on future developments to enhance the efficacy of this promising therapeutic approach.

First draft submitted: 4 April 2016; Accepted for publication: 27 April 2016; Published online: 10 May 2016

Keywords: autoimmune diseases • foralumab • immune tolerance • immunotherapy • monoclonal CD3 antibodies • otezolizumab • Tregs • teplizumab • Type 1 diabetes • visilizumab
demonstrating that administration of anti-CD3 mAb to overt diabetic NOD (non obese diabetic, developing spontaneous autoimmune diabetes) mice induced long-lasting remission from disease [8]. This discovery initiated further successful studies on anti-CD3 mAb for tolerance induction in autoimmune diseases and other immune mediated pathologies [9]. The advances in genetic engineering in antibody structure permitted addressing the shortcomings of OKT3, that is, its immunogenicity and side effects. As the immunogenicity of OKT3 and its peers were caused by their rodent origin, anti-CD3 mAb were humanized by grafting the complementarity determining region that is key to recognizing antigen, into a human IgG backbone and today some antibody clones are of completely human origin [10]. Moreover, it was shown that the side effects provoked by the first generation of anti-CD3 mAb were caused by concomitant binding to the Fc receptors (FcR) on antigen presenting cells and to the CD3/TCR complex on T cells, leading to strong T-cell activation and a high transient release of proinflammatory cytokines (i.e., TNF-α, IL-6, IFN-γ, IL-2) by the targeted T cells briefly after the first administration [11,12]. After it had been shown that non-FcR binding anti-CD3 mAb were still tolerogenic [13], human anti-CD3 mAb were rendered non mitogenic by introducing mutations into the IgG backbone that led to highly decreased affinity to Fc receptors [14,15]. These advances led to the further development of anti-CD3 mAb for treatment of autoimmune diseases [16]. In this review, we will discuss the therapeutic potential of anti-CD3 mAb in animal models and human disease with a focus on autoimmune diseases, the mechanisms underlying tolerance induction by anti-CD3 mAb, current clinical developments in this field as well as challenges and future directions.

Tregs in autoimmune diseases

Autoimmune diseases are triggered by autoreactive T and B cells that escape mechanisms of immune tolerance. Tregs are essential gatekeepers of immune tolerance by suppressing activation, proliferation and effector responses of both innate and adaptive immune cells. Treg are a heterogeneous population with respect to their origin of development, phenotype, functional activity and activation status and are generally categorized into natural/thymus derived Treg (tTreg) cells and induced/peripherally derived Treg (pTreg) [17], recently joined by a group of tissue resident Tregs [18]. Natural Treg are selected in the thymus thanks to their relatively high-affinity interaction with self-peptide/MHC class II complexes [19,20] and comprise 5–10% of the peripheral CD4+ T cells in mice and humans. They are characterized by expression of the IL-2R α-chain (CD25) [21] and the transcription factor FoxP3 that is essential for their regulatory function and for control of autoimmunity [22,23]. Peripheral Treg are induced by foreign antigen under tolerogenic conditions and thus are an attractive target for antigen-specific immunotherapy. Peripherally induced Treg mostly refer to TGF-β induced FoxP3+ Treg [24], IL-10 secreting Tr1 cells [25], Th3 cells that express membrane bound TGF-β being held in a latent state by LAP [26,27], but also include inducible CD8+ Treg, CD3+CD4+CD8- Treg, CD4+Vα14+ NKTreg and γδ Treg [28]. Tregs control autoimmunity by secretion of inhibitory cytokines (e.g., IL-10 [29], TGF-β [30] and IL-35 [31]), granzyme/perforin induced apoptosis of effector lymphocytes [32], depriving effector T cells of cytokines leading to apoptosis, inhibition of dendritic cell function [33,34] or metabolic disruption [35]. Most if not all autoimmune diseases have been associated with alterations of Tregs in terms of frequency and/or function, making these cells appealing therapeutic targets for immunotherapy of autoimmune diseases [36]. Of note, anti-CD3 mAb therapy is associated with an increase of the number and function of several subpopulations of Treg and of the regulatory cytokines TGF-β and IL-10. These parameters might be useful biomarkers for indicating treatment success in patients.

Anti-CD3 mAb in animal models

Intravenous administration of anti-CD3 mAb

Much of what we know about the mode of action, the pharmacodynamics and the tolerogenic activity of anti-CD3 mAb in autoimmune diseases derives from animal models. As anti-CD3 mAb are strictly species specific, meaning that human anti-CD3 mAb do not crossreact with T cells from mice, it wasn’t until the development of the anti-mouse anti-CD3 mAb 145–2C11 [7] that the therapeutic potential of anti-CD3 mAb and the underlying mechanisms could be explored in mouse models. Until 1994 only the immunosuppressive properties of anti-CD3 mAb through depletion of T cells were known. Chatenoud et al. were the first to demonstrate the tolerogenic properties of intravenously administered anti-CD3 mAb [8]. A 5-day treatment of overt diabetic NOD mice with the anti-CD3 mAb 145–2C11 [8] or F(ab’)2 fragments of 145–2C11 [13] induced rapid, long-lasting and antigen-specific remission from disease and also prevented immune response toward syngeneic pancreatic islet grafts but not against unrelated antigens as shown by normal rejection of skin allografts [8]. Since then intravenous administration of anti-CD3 mAb has been successfully tested in numerous animal models of autoimmunity [16], including the EAE (experimental autoimmune encephalomyelitis) model of MS [37,38],

```
TNF-KLH induced colitis (a model of inflammatory bowel disease [IBD]) [39] and collagen-induced arthritis (modeling rheumatoid arthritis) [40]. In addition to autoimmunity, anti-CD3 mAb also improved the outcome of graft versus host disease [41,42], transplantation [43–46] and atherosclerosis [47]. The observation that anti-CD3 mAb are able to halt active autoimmunity but less efficient in preventing disease [13,38] led to an important discovery in the field of transplantation. While administration at the time of transplantation induces immunosuppression, a slightly delayed treatment can induce long-lasting remission in pancreatic islet grafts [45] and heart transplantation [46], probably due to preferential depletion of activated effector T cells, resistance of Tregs to anti-CD3 mAb-induced apoptosis and establishment of local immune privilege, factors discussed in more detail in the following paragraph.

How does intravenous administration of anti-CD3 mAb induce tolerance in autoimmune diseases?

Therapeutic anti-CD3 mAb bind to the epsilon chain of the CD3/TCR complex that characterizes T lymphocytes [48–50]. Much of what we know about anti-CD3 mAb and their therapeutic potential derives from research on NOD mice that spontaneously develop autoimmune diabetes [16,51]. Several nonmutually exclusive mechanisms have been proposed to explain the therapeutic effect of intravenously administered anti-CD3 mAb (see Figure 1). After a short lasting capping of the CD3 complex, the CD3/T-cell receptor complex disappears from the cell surface by internalization or shedding, a process called antigenic modulation that renders T cells temporarily blind to their cognate antigens [52]. Anti-CD3 mAb-induced signaling preferentially induces anergy [53] or apoptosis in activated T cells while sparing Tregs [51,54]. Heterogeneity of TCR expression by different T-cell subsets might explain the differential effect of anti-CD3 mAb on effector versus regulatory or naïve T cells [55]. The tolerogenic function of anti-CD3 mAb is independent of effector functions that are linked to the Fc region of the antibody, such as complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP), as F(ab′)2 fragments are sufficient for tolerance induction [13]. It has been shown that T cells become rapidly activated in response to intravenous anti-CD3 mAb as measured by increased expression of CD69 and CD25 and serum concentrations of TGF-β and IFN-γ briefly after injection, even when using nonmitogenic anti-CD3 mAb [56,57]. The direct effects of anti-CD3 mAb on T cells (capping, antigenic modulation, induction of apoptosis and anergy) are all short-term and are gone after clearance of the antibody from the circulation. Yet, the pharmacological effects mediated by anti-CD3 mAb therapy are long lasting, indicating that additional and more durable mechanisms are involved in anti-CD3 mAb mediated tolerance. Perruche et al. showed a link between anti-CD3 mAb-induced apoptosis, phagocytosis of the resulting apoptotic bodies by macrophages and a subsequent increase of TGF-β [58]. TGF-β plays an essential role in regulating immune responses and the production of TGF-β is crucial for the therapeutic effect of anti-CD3 mAb [59]. TGF-β has pleiotropic effects on the adaptive immunity [60], including induction of adaptive FoxP3+ Tregs [61], inhibition of T-cell activation and proliferation [62] and blocking dendritic cell maturation [63], and all these outcomes are observed after anti-CD3 mAb mediated tolerance induction. Indeed, it has been demonstrated that anti-CD3 mAb therapy increases TGF-β dependent Tregs [59], renders effector T cells more susceptible to TGF-β mediated regulation [64] and confers a tolerogenic phenotype to dendritic cells [51]. Several groups found that anti-CD3 mAb have a distinct effect on intestinal T cells [65,66]. Anti-CD3 mAb were shown to trigger accumulation of regulatory Th17 cells expressing IL-10 in the small intestine via CCR6/CCL20 dependent migration [65]. Similarly, administration of human anti-CD3 mAb to humanized mice (immunodeficient mice reconstituted with human hematopoietic stem cells) induced gut tropic regulatory CD4+CD25highCCR6+FoxP3+ T cells that secreted IL-10 [66]. Blocking migration of cells to the gut with anti-integrin α4 mAb abrogated the therapeutic effect. CD4+CD25highCCR6+FoxP3+ T cells were also increased in patients with Type 1 diabetes (T1D) that received anti-CD3 mAb [66]. Stimulation of intestinal tissue samples from patients with cancer or IBD or healthy controls with anti-CD3 mAb led to a decrease of proinflammatory cytokines and chemokines and an increase of IL-10. Blocking IL-10 abrogated the anti-inflammatory effect of anti-CD3 mAb [67]. Of note, IL-10 induction by anti-CD3 mAb was observed in all these studies investigating the effect of anti-CD3 mAb on intestinal T cells and IL-10 is a key anti-inflammatory cytokine regulating intestinal homeostasis and controlling IBD [68]. Anti-CD3 mAb are currently being tested in clinical trials for IBD (see chapter on clinical development of anti-CD3 mAb). In vitro anti-CD3 mAb stimulation of lamina propria derived CD4+ T cells, but not CD8+ T cells or T cells from peripheral blood, from healthy controls or patients with IBD led to apoptosis (dependent on caspase 3 and caspase 8) [69]. Anti-CD3 mAb therapy has also been associated with the TNF depen-
Cytokines

Anti-CD3 mAb

CD3/TCR complex

Binding

Antigenic modulation

Shedding

Internalization

Activated T cell

Anergy

Activated T cell

CD4+ CTLA4+
PDL1+

Apoptosis

Phagocytosis

Macrophage

TGF-β

CD4+FoxP3

TGF-β

FoxP3 induction

CD4+FoxP3+

Unresponsiveness

Inhibition

Effector T cell

Tolerogenic DC

Inhibition

TGF-β

CD4+FoxP3+
The gastrointestinal immune system (GALT) has the unique capacity to discriminate between potentially dangerous and harmless material, for example, raising a protective immune response against pathogenic microbes and toxins while inducing tolerance to food antigens and commensal microbes. The observations that administration of antigen via the oral route can induce changes in the immune system leading to systemic tolerance (a concept known as oral tolerance) have given rise to the hypothesis that oral anti-CD3 mAb could be an alternative way for tolerance induction while decreasing side effects linked to parenteral administration. While the tolerogenic effects of intravenously administered anti-CD3 mAb have been thoroughly investigated since the 90s, the discovery that oral administration of anti-CD3 mAb can induce tolerance is fairly recent, dating back to 2006 [71]. Oral anti-CD3 mAb has been demonstrated to protect from EAE and had beneficial effect when given at peak of disease by inducing dominant immune tolerance that could be transferred by CD4+ T cells containing a subset expressing membrane bound TGF-β [71]. A dose–response experiment showed that a lower dose of anti-CD3 mAb (5 μg) was superior to higher amounts (50 or 500 μg) in inducing tolerance [71]. This may be related to the fact that peripheral Tregs are best induced by weaker, suboptimal TCR stimulation [72,73]. Similar to intravenous administration, the Fc portion was not required for the therapeutic effect [71,74]. Oral anti-CD3 mAb has demonstrated therapeutic efficacy in other autoimmune models such as diabetes induced by low-dose streptozocin [75], mouse models of SLE (systemic lupus erythematosus) [76], CIA (collagen induced arthritis) [77] and in the CD4+CD45RBhigh T-cell transfer model of IBD [78]. Oral administration of anti-CD3 mAb has also shown promise in treatment of inflammatory conditions other than autoimmune disorders. Oral anti-CD3 mAb decreased adipose tissue inflammation and alleviated insulin resistance in ob/ob mice, an animal model of Type 2 diabetes [79]. Additionally, ApoE deficient mice that are prone to atherosclerosis had less lesions, macrophage and CD4+ T-cell accumulation when treated with oral anti-CD3 mAb [80].

How does oral anti-CD3 mAb induce tolerance?

Similar to orally administered peptides [81,82] and cytokines [83], oral anti-CD3 mAb retains biological activity in the gut [75]. Anti-CD3 mAb was detected in the

Figure 1. Tolerance induction by intravenously administered anti-CD3 mAb is a multistep process (see facing page). Binding of anti-CD3 mAb to the CD3/TCR complex leads to antigenic modulation, i.e., disappearance of the CD3/TCR from the cells surface by shedding or internalization, rendering T cells blind toward their cognate antigen. At the same time anti-CD3 mAb-induced signaling through the CD3/TCR complex can render the T cell anergic or trigger apoptosis. While antigenic modulation and anergy only render lymphocytes ignorant to antigen and lead to transient immunosuppression, anti-CD3 mAb-induced tolerance is dependent on apoptosis. Apoptotic T cells and macrophages that ingest the apoptotic bodies both produce TGF-β that promotes a tolerogenic microenvironment. TGF-β can induce FoxP3 in CD4+ T cells, rendering them suppressive. Both, TGF-β and CD4+FoxP3+ T cells inhibit effector T cells and skew antigen presenting cells such as dendritic cells toward a tolerogenic phenotype.
Nasal administration of anti-CD3 mAb

Maintenance of immune homeostasis is particularly challenging at sites of constant antigen encounter not only in the GI tract but also in the respiratory tract, which led us to test if anti-CD3 mAb could also induce tolerance when administered nasally. Nasal anti-CD3 mAb improved symptoms of lupus in two strains of lupus prone mice in a TGF-β and IL-10 dependent manner [76]. This was associated with an increase of IL-10 secreting CD4+CD25+LAP+ Tregs and a decrease of IL-17 and IL-21 producing CD4+○CO8’CXCR5’ follicular T helper cells [76]. In collagen induced arthritis [77] nasal anti-CD3 mAb was superior to orally administered CD3 in preventing disease. Nasal tolerance induction depended on generation of IL-10 secreting LAP+ T cells [77]. The in vivo induction of IL-10 secreting Tregs (Tr1) by nasal anti-CD3 mAb was dependent on IL-27 secreting dendritic cells in the upper airways and was controlled by the transcription factors AHR and c-maf [90]. Autocrine IL-21 was found to expand and maintain the induced Tr1 cells [90]. It is interesting to note that nasal tolerance induction by anti-CD3 mAb depends mostly on IL-10 [76] while oral tolerance induction by anti-CD3 mAb seems to be TGF-β dependent [71,75,80,89](with the exception of tolerance induction in IBD that depends on IL-10) [78]. This might be due to the organ specific microenvironment favoring TGF-β induction in the gastrointestinal immune system while leaning toward IL-10 in the respiratory tract. Nasal administration of anti-CD3 mAb has not yet been explored as extensively as oral administration but equally seems to be a very safe and promising therapeutic approach.

Clinical development of antihuman anti-CD3 mAbs

The current generation of anti-CD3 mAb that is being developed for clinical application displays very low affinity binding to Fc receptors thanks to amino acid substitutions in the Fc portion that reduced glycosylation. Immunogenicity is negligible due to removal of rodent portions of the antibody by humanization or by the use of fully human antibodies. So far four anti-human CD3 mAb are in clinical development (see Figure 3). Teplizumab, also known under the names hOKT3γ1 (Ala-Ala) and MGA031, is a humanized IgG1 antibody that was developed by grafting the complementarity determining region of OKT3 into a human IgG1 backbone. Introduction of two point mutations in its Fc portion decreases binding to FcR [15]. This antibody has been clinically developed by MacroGenics and Eli Lilly. Otelixizumab (ChAglyCD3, TRX4, GSK2136525)

CD4+LAP+ T cells contributed to suppressive activity in vitro that was dependent on TGF-β but independent on IL-10 in most studies [71,75,80,89]. Notably CD4+LAP+ T cells controlled expansion of IL17’ follicular T helper cells [89], Th1 responses [75,80], Th2 responses [80] and most likely Th17 responses [71] depending on the disease model. While oral anti-CD3 mAb appears to work in a TGF-β dependent manner in most experimental models [71,75,80,89], the therapeutic effect in the CD45RBhigh induced colitis model was associated with an increase of IL-10 and TGF-β but dependent on IL-10 [78], in line with the observation that IL-10 is of major importance in maintaining intestinal homeostasis. In conclusion, oral anti-CD3 mAb appears to be a very safe way of tolerance induction through generation of regulatory LAP+ and FoxP3+ T cells that secrete TGF-β and IL-10.
Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside

Review

was derived from the rat antibody YTH12.5. This humanized IgG1 bears a single mutation in the \( \gamma 1 \) Fc portion to avoid glycosylation and thus inhibit FcR binding [14]. The companies TolerX and GSK were involved in the clinical development of otelixizumab. Visilizumab (Nuvion, HuM291) is a humanized IgG2 antibody that is being clinically developed by PDL BioPharma and is rendered non mitogenic by two point mutations in its Fc region [91]. Foralumab (28F11-AE; NI-0401) is so far the only entirely human anti-CD3 mAb. The completely human origin further decreases side effects that have been previously noted with other humanized anti-CD3 mAb. The Fc portion of this human IgG1 was mutated such that the mAb is non FcR binding in vitro and exhibits only minor cytokine release in vivo while maintaining modulation of the CD3/TCR and T-cell depletion [92]. The reduced release of cytokines after intravenous administration decreases side effects and improves the overall safety

Figure 2. Mechanism of oral anti-CD3 monoclonal antibody induced tolerance. Orally administered anti-CD3 mAb passes the stomach intact and is taken up by the intestinal epithelium. In the lamina propria anti-CD3 mAb binds to the CD3/TCR complex on T cells and FcR binding anti-CD3 mAb can cross-link the CD3/TCR complex via binding to FcR positive antigen presenting cells but this is not required for tolerance induction. Presumably, anti-CD3 mAb binding to CD4+ T cells in the lamina propria triggers upregulation of latent membrane bound TGF-\( \beta \) by the latter, converting them into so-called Th3 cells. The regulatory function of Th3 cells is largely mediated through TGF-\( \beta \) but also IL-10 can contribute to the establishment of a tolerogenic microenvironment and lead to inhibition of effector T cells, induction of Tregs and promotion of tolerogenic dendritic cells that also favor induction of Treg subsets such as IL-10 producing Tr1 cells and FoxP3+ Treg. While the role for regulatory \( \gamma \delta \) T cells and CD8+ T cells in oral antigen mediated tolerance is already established, a role in oral anti-CD3 mAb-induced tolerance is likely but has not yet been demonstrated.
profile of this anti-CD3 mAb. Foralumab is being clinically developed by Tiziana LIFE SCIENCES.

**Clinical trials with intravenous anti-CD3 mAb**

Two Phase I safety trials in renal allograft recipients with acute rejection episodes demonstrated that otelixizumab [93] and teplizumab [94] do not elicit major side-effects. In the year 2000 the first clinical trials with humanized anti-CD3 mAb were launched to test the tolerogenic activity of anti-CD3 mAb in T1D. In an American Phase I/II trial, teplizumab treatment of patients with recent onset T1D improved insulin production and metabolic control [95,96]. Similarly, a European Phase II/III study giving up to a total of 64 mg of the anti-CD3 mAb otelixizumab over 6 consecutive days reported a long-lasting therapeutic effect in terms of β-cell preservation, as measured by C-peptide levels [97,98]. The effect was most significant in patients that had good C-peptide levels at the beginning of the treatment [97,98]. Follow-up studies were designed to test whether a lower dose of teplizumab (two courses of 14 days treatments, each cumulating 5, 6 or 17 mg) [9] or otelixizumab (3.1 mg cumulated during 8 days) could preserve C-peptide secretion in new-onset T1D patients while decreasing the side effects that were observed in the previous studies. However, the low dose of otelixizumab was nonefficacious [99–101] and the choice of endpoints of the Protégé study testing teplizumab was highly controversial [9]. A post hoc analysis using conventional endpoints found a treatment benefit in patients with higher baseline levels of C-peptide [102]. Also the AbATE study reported that patients with new onset diabetes benefit from treatment with teplizumab for at least 2 years and identified immunologic features at baseline that were significantly different between responders and nonresponders [103]. Teplizumab is currently being tested in preventing onset of T1D in a population ‘at-risk’ (ClinicalTrials.gov; NCT01030861). A new study on otelixizumab is recruiting T1D patients to identify the concentration with maximal therapeutic effect and minimal side effects (NCT02000817, clinicaltrials.gov). While otelixizumab and teplizumab were foremost tested in patients with T1D, visilizumab and foralumab were mostly studied in IBD [92]. A first Phase I trial, assessing safety and efficacy of visilizumab for the treatment of IBD (but used only half of the original dose, i.e., 5 μg/kg) was terminated prematurely because of safety and efficacy concerns [105]. Treatment with a cumulated dose of only 0.7 mg (for a patient weighing 70 kg),
was not only associated with a cytokine release syndrome but also with an increased rate of infection as well as vascular and cardiac symptoms. This was surprising as administration of 48 mg otelixizumab to patients with T1D provoked less side-effects [97]. It was hypothesized that visilizumab’s low tolerability as compared with other Fc modified anti-CD3 mAb might be due to a stronger activation of CD3/TCR signaling [92]. As a consequence the clinical development of visilizumab was halted. Foralumab, the only completely human anti-CD3 mAb, was assessed in a Phase I/II clinical trial in patients with moderate to severe active Crohn’s Disease [106]. Intravenous administration of up to 1 mg for 5 days was considered safe with manageable side effects. Even though the power of this study was too limited to assess clinical efficacy, the dose of 1 mg seemed to ameliorate the endoscopic index score while no significant improvement of clinical symptoms as assessed by the Crohn’s disease activity index was reported [106].

Clinical trials with oral anti-CD3 mAb
A Phase I study with healthy subjects showed that repeated oral administration of the anti-CD3 mAb OKT3 was safe and induced immunological effects [107]. When given orally, this FcR binding antibody did not trigger systemic proinflammatory cytokines, immunogenicity, depletion of T cells or modulation of the CD3/TCR complex. Oral OKT3 enhanced T-cell proliferation, suppressed Th1 and Th17 responses and led to increased TGF-β/IL-10 expression and decreased IL-23/IL-6 expression by dendritic cells [107]. A treatment regime of five-times 1 mg was considered superior to 0.2 or 5 mg [107]. Two single blind randomized placebo controlled Phase IIa studies in patients with treatment resistant chronic hepatitis C infection (HCV) [108] or nonalcoholic steatohepatitis (NASH) and altered glucose metabolism that included subjects with Type 2 diabetes [109], demonstrated that oral CD3 was safe and well tolerated, as measured by blood hematology, chemistry, immunological safety markers and physical signs [108,109]. Both studies reported positive effects on disease and immunological markers including an increase of Tregs [108,109].

Thus, mucosal anti-CD3 mAb therapy is an attractive approach for the treatment of inflammatory and autoimmune diseases. Further studies are now required to investigate the therapeutic effect of oral anti-CD3 mAb and to test nasal administration.

Combination therapies with anti-CD3 mAb to improve safety
The current generation of anti-CD3 mAb has highly reduced affinity for Fc receptors and thus shows dramatically reduced side effects as compared with the original FcR binding antibodies derived from rodents. However, T-cell activation and minor cytokine secretion are still observed [93,95,97,100], leading to moderate flu-like syndrome including fever, headache and gastrointestinal symptoms and one clinical trial reported EBV reactivation [111]. Pretreatment with corticosteroids is one of the most widely used strategies to limit infusion-related reactions and has already been tested in combination with intravenous anti-CD3 mAb therapy in the transplantation setting either alone [112] or together with indomethacin [113] or pentoxyfylline [114]. Corticosteroids such as hydrocortisone [115] and methylprednisolone [116] inhibit release of TNF-α, IL-6 and IL-2, thus inhibiting the cytokine release syndrome after infusion with anti-CD3 mAb. As TNF-α plays a major role in triggering anti-CD3 mAb related side effects specific inhibition of TNF-α using blocking antibodies is an attractive alternative [117]. Indeed, it has been shown that anti-TNF-α mAb successfully inhibit anti-CD3 mAb mediated side effects in mice [117] and men [118]. Combination of immunosuppressive drugs with anti-CD3 mAb has given mixed results. Cyclosporine [13], cyclophosphamide [13] and rapamycin [119] have been shown to interfere with anti-CD3 mAb-induced tolerance in the NOD model of autoimmune diabetes while another group reported no negative impact of cyclosporine on efficacy in the EAE model of multiple sclerosis [120]. One explanation might be the observation that cyclosporine, tacrolimus and rapamycin mediate islet toxicity [121] that constitutes out of obvious reasons a major problem in autoimmune diabetes. Another important difference between these studies is the treatment regimen. While the diabetes study was based on a treatment with intravenous anti-CD3 mAb for 5 consecutive days, mice from the EAE study were only treated twice, which achieves in our hands immunosuppression but not tolerance induction. Hence, cyclosporine, tacrolimus and rapamycin might interfere with anti-CD3 mAb-induced tolerance but not with immunosuppression. In conclusion, the use of immunosuppressive agents might interfere with the tolerogenic effect of anti-CD3 mAb and further research is necessary before considering a combination. A very promising approach to improve safety is oral or nasal administration of anti-CD3 mAb. Clinical data showed promising results in terms of safety and therapeutic effect [107,109]. Future development in anti-CD3 immunotherapy warrants further clinical studies to explore the potential of mucosal anti-CD3 mAb therapy for treatment of a wide range of autoimmune and inflammatory diseases in humans.
Combination therapies with anti-CD3 mAb to improve efficacy

Many research efforts aim at enhancing anti-CD3 mAb-induced tolerance for therapy of autoimmune diseases [92]. Several nonmutually exclusive strategies are pursued, i.e., increasing the function or number of Tregs and tolerogenic cytokines, better depletion of autoreactive lymphocytes, interfering with proinflammatory processes and disease-specific approaches that improve function or regeneration of the target organ. Induction of antigen-specific or nonspecific Tregs is an attractive approach for treating autoimmunity [122] and has the potential to improve the therapeutic effect of anti-CD3 mAb, as in the case of mucosal administration of antigen [26]. Oral administration of autoantigen or anti-CD3 mAb has been shown to induce tolerance multiple animal models of autoimmune diseases [26,85]. Co-administration of oral insulin to diabetic NOD mice improved and prolonged the therapeutic efficacy of anti-CD3 mAb therapy [123]. Interestingly, preexisting autoantibodies predicted the efficacy of this combination therapy [123]. Takii-shi et al. went further and combined anti-CD3 mAb with mucosal delivery of biologically contained Lactococcus lactis genetically modified to secrete proinsulin together with the immunomodulatory cytokine IL-10, inducing long-term tolerance in diabetic NOD mice [124]. While oral tolerance induction is associated with LAP Treg (Th3 cells), nasal administration of antigen relies on induction of IL-10 producing Treg (Tr1) [26]. Intranasal delivery of insulin also enhances the therapeutic effect of anti-CD3 mAb in NOD mice [125]. Also combination of intravenous anti-CD3 mAb with administration of a GAD65 expressing plasmid gave promising results in autoimmune diabetes [125]. The combination of oral or nasal antigen with intravenous anti-CD3 mAb has not yet been tested in the clinic or in other autoimmune diseases but has good potential for clinical translation. Similarly, we hypothesize that oral and nasal anti-CD3 mAb are likely to enhance the tolerogenic effect of intravenous anti-CD3 mAb by inducing Treg. Anti-CD3 mAb have been intensively studied in T1D and an important point that needs to be considered in T1D is that once diabetes is diagnosed a big portion of insulin producing β-cells is already destroyed and anti-CD3 mAb therapy will not be sufficient to reverse diabetes once the autoimmune process has progressed too far. Thus, combination of anti-CD3 mAb therapy with methods that restore insulin production by recovery, expansion or replacement of β-cells is an attractive approach. Exendin-4 is a glucagon-like peptide-1 receptor agonist that stimulates β-cell proliferation and inhibits apoptosis and it increased remission from diabetes in NOD mice treated with anti-CD3 mAb by enhancing the recovery of the residual islets [126]. This combinatorial approach may be useful in treatment of patients with new-onset T1D that still harbor a sufficient amount of functional β-cells. In cases of extremely low β-cell mass, islet transplantations might be required in combination with immunotherapy. The combination of teplizumab with other immunosuppressive drugs in the setting of pancreatic islet transplantation showed promising results [127,128]. However, these studies only assessed the benefit of anti-CD3 mAb as immunosuppressive agents. Recent findings show that anti-CD3 mAb can induce operational tolerance in the setting of islet allografts in mice if administered some days after transplantation, when T cells have already been primed against the allo-antigens [45]. Another publication showed that combination of anti-CD3 mAb with transplantation of embryonic pancreatic precursors has a synergistic effect on recovery of NOD mice from diabetes [129]. Inhibition of inflammation by specifically targeting of autoreactive T cells or neutralizing of proinflammatory cytokines seems to be a particularly promising approach. The selective SIP receptor modulator ponesimod sequesters T cells within lymph nodes. Administration of ponesimod to diabetic NOD mice followed by anti-CD3 mAb treatment, started a few days before discontinuation of ponesimod, induced long-lasting disease remission in all treated mice [130]. IL-1β is an interesting therapeutic target in T1D as it has been shown to inhibit insulin secretion and synthesis and to affect β-cell viability [131]. Ablamu-nits et al. found synergistic reversal of autoimmune diabetes and enhanced immune regulation in NOD mice treated with anti-CD3 mAb together with IL-1 receptor antagonist [132]. Combination of anti-CD3 mAb with anti-TNF mAbs achieved synergistic therapeutic effect in collagen-induced arthritis (CIA), inhibiting progression of disease [133,134]. Also in kidney transplantation pairing anti-CD3 mAb with anti-TNF mAb improved the clinical outcome [135] and it is has been proposed that this combination achieves superior depletion of pathogenic T cells [92]. It will be interesting to assess efficacy of these combinatorial approaches in the clinical setting. It will be important to test if these drugs can also increase the efficacy of oral or nasal anti-CD3 mAb. No combination studies with mucosally administered anti-CD3 mAb have been performed so far.

Conclusion & future perspective

Non-FcR binding anti-CD3 mAb are promising modalities for treatment of autoimmune and inflammatory diseases. First clinical trials investigating
intravenous administration of teplizumab, otelixizumab or visilizumab have been encouraging with positive clinical responses [95–98,104]. Follow-up trials that did not recapitulate the initial success [99–101,105], most probably due to the altered studies protocols (i.e., reduced dosing, different end points), clearly point out the challenges of the clinical development of anti-CD3 mAb: finding the best dose, treating at the right time-point and identifying biomarkers that predict treatment success. A significant progress was the identification of baseline metabolic (HbA1c and insulin use) and immunologic features distinguishing responders from nonresponders in the AbATE study that showed C-peptide preservation in T1D patients, 2 years after teplizumab treatment [103]. The ongoing AbATE follow-up study (ClinicalTrials.gov; NCT02067923) is further investigating C-peptide changes in treated patients versus the control group from the AbATE trial. Teplizumab is also being tested in prevention of T1D in a population ‘at-risk’ (ClinicalTrials.gov; NCT01030861) and a clinical trial on otelixizumab is currently recruiting T1D patients to pinpoint the concentration with maximal therapeutic effect and minimal side effects (NCT02000817, clinicaltrials.gov). It will be interesting to see if previously reported biomarkers that distinguish responders from nonresponders will be confirmed and if new biomarkers can be identified. With the encouraging progress in T1D it is likely that intravenous anti-CD3 mAb therapy will also be further explored in other autoimmune diseases.

Multiple preclinical studies have demonstrated that oral (or nasal) administration of anti-CD3 mAb can be used effectively for the prevention and/or treatment of disease in animal models of autoimmune diseases [75–77,84,89] and inflammatory disorders [47,79], foremost by induction of Tregs. There were no detectable side effects such as cytokine release syndrome or immunogenicity [107–109]. The strategy to induce oral tolerance by anti-CD3 mAb represents an exciting and novel avenue for treatment of autoimmune diseases due to the very good safety profile and the highvariety of potential applications. A clinical trial testing oral and nasal administration of foralumab for treatment of autoimmune disease and chronic inflammation is being planned by Tiziana Life Sciences.

Preclinical data suggest that intravenous administration of anti-CD3 mAb is more suitable to treat active autoimmune disease while oral anti-CD3 mAb is more potent in preventing disease and has considerably less side-effects. Hence, the route of administration will differ according to the respective application and the patient’s immune status. The combination of both routes (intravenous and mucosal) might be an attractive strategy to be explored. More preclinical and clinical studies are necessary to better understand mechanisms underlying intravenous and oral anti-CD3 mAb-induced tolerance, what distinguishes the different clones of anti-CD3 mAb in terms of therapeutic effect and side effects and how we can enhance their therapeutic effect. Preclinical studies have demonstrated a high potential of combining intravenous or mucosal anti-CD3 mAb with other immunomodulatory drugs to produce additive or synergistic therapeutic effect [77,123–126,130,132–134]. Now, clinical trials are needed to further explore the most promising combination therapies. The obvious choice would be combination of anti-CD3 mAb with FDA approved drugs that are already being used as gold standard for the treatment of respective inflammatory and autoimmune diseases. Further mechanistic studies will address the impact of the microenvironment on anti-CD3 mAb-induced tolerance and open the door to new therapeutic combinations.

Also from an industry perspective anti-CD3 mAb therapy represents an attractive strategy for a wide range of autoimmune and inflammatory diseases. Thanks to modern technologies involving chimerization and humanization of rodent antibodies for clinical use, side effects triggered by mAbs have been drastically reduced [10,136]. An increasing number of humanized antibodies is being approved by FDA as drugs [137] and the commercial impact is considerable, with annual sales exceeding multibillion dollars in recent years [138].

In short, anti-CD3 mAb have the potential to revolutionize therapy of chronic inflammatory and autoimmune diseases with high unmet medical needs such as IBD, NASH, T1D and MS.

Financial & competing interests disclosure
Howard L Weiner received consulting fees and/or research support from several companies including Serono, Biogen, Therapix, Novartis, Tiziana Life Sciences, Genzyme and Teva. Howard L. Weiner receives funding from the NIH (R01 AI43458, entitled “Mechanisms of the Induction of Oral Tolerance”. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Open access
This work is licensed under the Attribution-NonCommercial-NoDerivatives 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/
Executive summary

Background
• 1979: discovery of the first anti-human CD3 monoclonal antibody (anti-CD3 mAb) OKT3/muromab.
• 1986: US FDA approval of OKT3 as immunosuppressant for inhibiting transplant rejection but rapid replacement by better immunosuppressive drugs with less side effects.
• 1987: development of the first anti-mouse anti-CD3 mAb (145–2C11).
• 1993: generation of the first humanized, non-Fc receptor binding anti-CD3 mAb with reduced side effects.
• 1994: discovery that anti-CD3 mAb can induce long-lasting tolerance in a mouse model of autoimmune diabetes.

Tregs in autoimmune diseases
• Most autoimmune diseases are due to aberrations in Tregs.
• Anti-CD3 mAb therapy is associated with an increased number and function of different subsets of Treg: FoxP3+ Treg, IL-10 secreting Tr1 and membrane TGF-β expressing Th3 cells.

Anti-CD3 mAb in animal models
• Intravenous administration of anti-CD3 mAb
  – Repeated intravenous administration of anti-CD3 mAb induces remission from disease in multiple mouse models of autoimmunity.
  – Intravenous anti-CD3 mAb therapy is more efficient reversing than preventing disease.
• How does intravenous administration of anti-CD3 mAb induce tolerance in autoimmune diseases?
  – Intravenous anti-CD3 mAb-induced tolerance is a multistep process involving several nonmutually exclusive mechanisms that restore the balance between Treg and effector T cells.
  – Binding of intravenous anti-CD3 mAb to the CD3/TCR complex on T cells triggers TCR modulation through internalization or shedding, TCR signaling, anergy and/or apoptosis.
  – Effector T cells are more susceptible to anti-CD3 mAb-induced apoptosis than Treg.
  – TGF-β derived from apoptotic cells and phagocytosing macrophages is essential for anti-CD3 mAb-induced tolerance.
  – Generation of gut tropic IL-10 secreting Treg likely contributes to the therapeutic effect of intravenous anti-CD3 mAb.

New mouse models for testing human specific anti-CD3 mAb
• Anti-CD3 mAb are species specific.
• Transgenic NOD mice expressing the human CD3 epsilon chain are a preclinical model for testing human anti-CD3 mAb in autoimmune diabetes.
• NOD/SCID IL2γc-/- (NSG) mice engrafted with human hematopoietic stem cells makes preclinical mechanistic studies of human anti-CD3 mAb in vivo possible.

Oral administration of anti-CD3 mAb in mice
• Oral administration of anti-CD3 mAb prevents autoimmunity and alleviates ongoing disease.
• Oral anti-CD3 mAb shows promise in treatment of inflammatory disorders.

How does oral anti-CD3 mAb induce tolerance?
• Oral anti-CD3 mAb-induced tolerance relies mostly on Th3 cells.
• Tr1 cells contribute to tolerance in the colitis model.
• Th3 cells inhibit follicular T helper cell, Th1, Th2 and likely Th17 responses, depending on the disease model.

Nasal administration of anti-CD3 mAb
• Nasal administration of anti-CD3 mAb prevents and improves autoimmunity in several mouse models.
• Nasal anti-CD3 mAb-induced tolerance depends on IL-10.

Clinical development of anti-human anti-CD3 mAbs
• The clinical development of anti-CD3 mAb was relaunched with the generation of non-Fc receptor binding, chimeric/humanized/human anti-CD3 mAb with reduced side effects (otelixizumab, teplizumab, visilizumab and foralumab).

Clinical trials with intravenous anti-CD3 mAb
• Otelixizumab and teplizumab showed promising results in patients with recent onset of Type 1 diabetes (T1D).
• A dose finding study with otelixizumab in T1D was launched after negative results from a clinical trial studying decreased dosing.
• Baseline metabolic and immunological markers that distinguish responders from non-responders were identified
• Foralumab and visilizumab were tested in patients with inflammatory bowel disease (IBD) with encouraging results.
• The clinical development of visilizumab was stopped due to safety concerns in a follow-up study.
• Otelixizumab, teplizumab and foralumab continue their clinical development.
Executive summary (cont.)

Clinical trials with oral anti-CD3 mAb
- Oral administration of anti-CD3 mAb was shown to be safe in three independent Phase I and II clinical trials.
- Oral anti-CD3 mAb-induced anti-inflammatory effects in healthy subjects and patients with chronic hepatitis C infection or NASH.

Combination therapies with anti-CD3 mAb to improve safety
- Immunosuppressive agents reduce side effects triggered by intravenous anti-CD3 mAb therapy.
- Some immunosuppressive agents interfered with anti-CD3 mAb-induced tolerance.
- Combination of intravenous anti-CD3 mAb with anti-TNFα mAb or corticosteroids looks promising.

Combination therapies with anti-CD3 mAb to improve efficacy
- Administration of oral or nasal auto-antigen improved the therapeutic effect of intravenous anti-CD3 mAb.
- Disease specific strategies to preserve, repair or replace the target organ are interesting.
- Neutralization of proinflammatory cytokines or targeting of effector T cells enhanced intravenous anti-CD3 mAb-induced tolerance.

Future perspective
- A dose finding clinical trial investigating intravenous otelixizumab in patients with Type 1 diabetes in ongoing.
- Teplizumab (iv.) is currently being tested in preventing Type 1 diabetes in ‘at-risk’ patients.
- A clinical trial is programmed to asses safety and efficacy of oral administration of foralumab.
- Combination of anti-CD3 mAb with immunomodulatory drugs has promising therapeutic potential.

References
Papers of special note have been highlighted as:
• of interest; •• of considerable interest

• Detailed and comprehensible review on oral tolerance induction using oral antigen or anti-CD3 mAb.


27 Tran DQ, TGF-β: the sword, the wand, and the shield of induced regulatory T cells. *Front. Immunol.* (Epub ahead of print).
Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside  

Review


** First study demonstrating that oral administration of anti-CD3 mAb induces tolerance in a mouse model of autoimmunity, including a detailed analysis of the underlying mechanisms that include generation of Th3 cells that are characterized by their expression of membrane bound TGF-β.


** First study demonstrating that nasal administration of anti-CD3 mAb induces tolerance in a mouse model of autoimmunity, by a mechanism different from oral administration.
Wu HY, Maron R, Tukpah AM, Weiner HL. Mucosal anti-CD3 monoclonal antibody attenuates collagen-induced arthritis that is associated with induction of LAP+ regulatory T cells and is enhanced by administration of an emulsome-based Th2-skewing adjuvant. J. Immunol. 185(6), 3401–3407 (2010).


First clinical trial testing the therapeutic effect of the anti-CD3 mAb teplizumab in patients with Type 1 diabetes and demonstrating treatment benefit in patients having received anti-CD3 mAb.


Clinical trial testing the therapeutic effect of the anti-CD3 mAb otelixizumab in patients with Type 1 diabetes. Patients with the highest residual beta-cell function at the beginning of the trial had highest benefits from the anti-CD3 mAb therapy.


Hagopian W, Ferry RJ, Sherry N et al. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results.


** Shows that oral anti-CD3 mAb therapy is beneficial for NASH patients, improving metabolic and immunologic parameters and confirms the good safety profile that has been previously described.


